Haar ondulieren - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Haar ondulieren - перевод на Английский

THE FIRST WAVELET
Haar function; Haar transform; Haar basis; Rademacher function; Haar basis functions; Haar Wavelet

Haar ondulieren      
marcel, set hair in waves, curl; wave one's hair, curl one's hair
marcel      
v. Haar ondulieren, wellen

Определение

Haar
·noun A fog; ·esp., a fog or mist with a chill wind.

Википедия

Haar wavelet

In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis. The Haar sequence is now recognised as the first known wavelet basis and is extensively used as a teaching example.

The Haar sequence was proposed in 1909 by Alfréd Haar. Haar used these functions to give an example of an orthonormal system for the space of square-integrable functions on the unit interval [0, 1]. The study of wavelets, and even the term "wavelet", did not come until much later. As a special case of the Daubechies wavelet, the Haar wavelet is also known as Db1.

The Haar wavelet is also the simplest possible wavelet. The technical disadvantage of the Haar wavelet is that it is not continuous, and therefore not differentiable. This property can, however, be an advantage for the analysis of signals with sudden transitions (discrete signals), such as monitoring of tool failure in machines.

The Haar wavelet's mother wavelet function ψ ( t ) {\displaystyle \psi (t)} can be described as

ψ ( t ) = { 1 0 t < 1 2 , 1 1 2 t < 1 , 0 otherwise. {\displaystyle \psi (t)={\begin{cases}1\quad &0\leq t<{\frac {1}{2}},\\-1&{\frac {1}{2}}\leq t<1,\\0&{\mbox{otherwise.}}\end{cases}}}

Its scaling function φ ( t ) {\displaystyle \varphi (t)} can be described as

φ ( t ) = { 1 0 t < 1 , 0 otherwise. {\displaystyle \varphi (t)={\begin{cases}1\quad &0\leq t<1,\\0&{\mbox{otherwise.}}\end{cases}}}